LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc. DEGREE EXAMINATION - MATHEMATICS
THIRD SEMESTER – APRIL 2019
17UMT3MC01– INTEGRAL TRANSFORMS AND PARTIAL DIFF. EQUATIONS
Date: 24-04-2019 Dept. No. Max. : 100 Marks
Port A (10 x 2 - 20 marks)
Answer all questions :
1) Find $L[t^2 + 2t + 3]$.
2) Find $L[te^{-at}]$.
3) Find $L^{-1}\left[\frac{1}{(s+2)^2+16}\right]$.
4) Find $L^{-1}\left[\frac{s}{s^{z}+k^{z}}\right]$.
5) State the linearity property of Fourier transform.
6) Prove that $F[f(ax)] = \frac{1}{a} F\left[\frac{s}{a}\right]$.
7) Define Fourier Cosine transform.
8) Find $F_{s} [e^{-ax}]$.
9) Form partial differential equation by eliminating the constants a and b from $z = ax + by + a$.
10) Solve $\frac{\partial^2 z}{\partial y^2} = \sin y$.
Section – B (5x8=40 Marks)
Answer any five questions :
11) Find $L\left[\frac{\cos 3t - \cos 2t}{t}\right]$.
12) Find $L[f(t)]$ where $f(t) = 0$ when $0 < t \le 2$
= 3when $t > 2$
13) Find $L^{-1}\left[\frac{s^2}{(s-1)^3}\right]$.
14) Find $L^{-1}\left[\frac{s-3}{s^2+4s+13}\right]$.
15) State and prove convolution theorem.
16) Show that $F_c\left[\frac{1}{\sqrt{x}}\right] = \frac{1}{\sqrt{s}}$.
17) Form a partial differential equation by eliminating function from $lx + my + nz = f(x^2+y^2+z^2)$.
18) Solve $p(1 + q^2) = q(z - 1)$.

Section – C (2 x 20 = 40 Marks)
Answer any two questions :
19) a) Find
$$L^{-1}\left[\frac{1}{s(s+1)(s+2)}\right]$$
.
b) Evaluate $\int_{0}^{\infty} te^{-3t}cost dt$. (10 +10)
20) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = sint$ given that $y = \frac{dy}{dt} = 0$ when t = 0.
21) Find the Cosine transform for F(x) if f (x) =1 when |x| < 1
=0 when |x| >1
Deduce that (i) $\int_{0}^{\infty} \frac{sint}{t} dt = \frac{\pi}{2}$ (ii) $\int_{0}^{\infty} (\frac{sint}{t})^2 dt = \frac{\pi}{2}$
22) a) Solve (y + z)p + (z + x)q = x + y.
b) Solve p² + q² = npq. (10 + 10)
